Mejora de la calidad de procesos con redes neuronales, algoritmos genéticos y lógica difusa

Mejora de la calidad de procesos con redes neuronales, algoritmos genéticos y lógica difusa

##plugins.themes.bootstrap3.article.main##

Juan M. Cevallos Universidad San Ignacio de Loyola, Lima, Perú
Abstract
In many cases, when trying to improve the quality of products or processes, it is necessary to simultaneously optimize multiple responses. A classic approach is to apply the Design of Experiments (DOE), multiple regression models to estimate the relationship between the responses and the controllable factors; then, combine the different responses with a desirability function and finally the controllable factors are optimized. However, it may happen that the relationship between controllable factors and responses is too complex to estimate the relationship with these methodologies; for example, a highly nonlinear relationship. A proposed alternative approach is the use of artificial neural networks (ANN) to estimate response functions; in the event of having qualitative variables, they are processed with fuzzy logic (FL), and in the optimization phase genetic algorithms (GA) are used. An example of optimizing a process of multiple responses is presented to validate this proposal.
Keywords

##plugins.themes.bootstrap3.article.details##

Author Biography / See

Juan M. Cevallos, Universidad San Ignacio de Loyola, Lima, Perú

Magister en Ingeniería Industrial. Doctor en Ingeniería. Ingeniero en Industrias Alimentarias. Profesor de la Facultad de Ingeniería de la Universidad San Ignacio de Loyola.

References / See

Bhol J; Bhattacharya, S. & Mandal, N. (2011). A Neuro-Genetic approach for multi-objective optimization of process variables in drilling. International Journal of Technology and Engineering System IJTES. 2(1), 89-94.

Cheng, C; Cheng, C & Lee, S. (2004). Neuro-Fuzzy and Genetic Algorithm in Multiple Response Optimization. Computers and mathematics with Applications. 44(4), 1503-1514.

Chiao,C &Hamada, M. (2001). Analyzing experiments with correlated multiple responses. Journal of Quality Technology, 33(4), 451-465.

Del Castillo, E. & Montgomery, D. (1993). A nonlinear programming solution to the dual response problema. Journal of Quality Technology. 25(3), 199-204.

Del Castillo, E. & Montgomery, D. (1996). Modified desirability functions for multiple response optimization. Journal of Quality Technology. 28(3), 337-345.

Derringer, G. & Suich, R. (1980) Simultaneous optimization of several response variables. Journal of Quality Technology. 12(4), 214-219.

Haykin,S (1994). Neural Networks. Nueva York: Macmillan College Publishing Company

Khury, A. y Conlon, M. (1981). Simultaneous optimization of multiple responses represented by polinomial regression functions. Technometrics. 23(1), 363-375.

Kim, K. & Lin, D.K.J. Dual response surface optimization: a fuzzy modeling approach. Journal of Quality Technology. 30(1), 1-10.

Myers, R., Montgomery, D. (2002). Response surface methodology: process and product optimization using designed experiments. 2a edición. Nueva Jersey: Wiley.

Montgomery, D. (2006). Diseño y Análisis de Experimentos. 4ta edición. México DF: Wiley

Nelder, J & Mead, R. (1965). A simplex method for function minimization. Computation Journal. Vol. 7, pp 308-313.

Ortiz F; Simpson, J; Pignatiello. J; Heredia, A. (2004). A Genetic Algorithm Approach to Multiple Response Optimization. Journal of Quality Technology. 36(4), 432-450.

Pignatiello, Jr. J.J. (1993). Strategies fo robust multiresponse quality engineering. IIE Transactions. 25(1), 5-15.

Vinning, G (1998). A compromise approach to multiresponse optimization. Journal of Quality Technology. 30(4), 309-313.

OJS System - Metabiblioteca |