Comportamento e Modelação do Aço

Comportamento e Modelação do Aço

##plugins.themes.bootstrap3.article.main##

Miguel da Silva Abambres
Resumen
El presente trabajo de revisión pone a disposición de toda la comunidad técnica y científica vinculada al estudio del comportamiento de estructuras de acero las leyes constitutivas utilizadas con frecuencia, y de manera eficaz, en la modelación del comportamiento elástico-plástico de aceros al carbono e inoxidables en simulaciones numéricas por elementos finitos. Ya que el acero inoxidable es un material relativamente nuevo en aplicaciones estructurales, y con un comportamiento material altamente no lineal y muy distinto al acero dulce (el acero inoxidable no tiene un límite de fluencia bien definido), el artículo se enfoca principalmente en los aceros inoxidables, incluyendo una descripción detallada (i) de los principales tipos de aplicaciones, y ventajas en la construcción, y (ii) de las principales expresiones analíticas propuestas en la literatura para modelar el comportamiento uniaxial de toda aleación (austeníticos, ferríticos o duplex). En particular, se recomienda el uso de la ley típica bilineal para modelar el acero al carbono (con o sin endurecimiento) y la relación no lineal (ε-σ) propuesta por Quach et al. (2008) para simular el acero inoxidable, la cual es (i) válida para el comportamiento a la tracción/compresión hasta la última extensión, y (ii) depende solo de dos parámetros básicos de Ramberg-Osgood (E, σ0.2, n). Asimismo, se sugiere que ese acero se modele con un comportamiento lineal en el régimen elástico, teniendo en cuenta el límite de tensión proporcional a 0.01% (σ0.01) como tensión de fluencia inicial.

##plugins.themes.bootstrap3.article.details##

Biografía del autor/a / Ver

Miguel da Silva Abambres, Universidade de Lisboa

Doctor en Ingeniería Civil.
Referencias / Ver

Abambres (2014). Análises Elasto-plásticas de 1a e 2a ordem de perfis metálicos de parede fina utilizando a Teoria Generalizada de Vigas (GBT), Tese de Doutoramento em Enga Civil, Departamento de Engenharia Civil, Arquitectura e Georecursos, Instituto Superior Técnico, Universidade de Lisboa, Portugal.

Abambres M., Camotim D., Silvestre N. (2011a). Análise elasto-plástica de barras com secção de parede fina no contexto da teoria generalizada de vigas, Actas (CD-ROM) do Congresso de Métodos Numéricos em Engenharia (CMNE), Coimbra (Portugal), 14-17/6, A. Tadeu et al. (eds.).

Abambres M., Camotim D., Silvestre N. (2011b). Análise fisicamente não linear de vigas metálicas no contexto da GBT, Actas do VIII Congresso de Construção Metálica e Mista, Guimarães, Portugal, 24-25/11, L. Silva et al. (eds.), II-295-304.

Abambres M., Camotim D., Silvestre N. (2012a). GBT-based elastic-plastic analysis of cold-formed steel members. Proceedings of the 7th International Conference on Advances in Steel Structures (ICASS), Nanjing (China), 14-16/4, S.L. Chan, G.P. Shu (eds.), Vol. 1, 219-227.

Abambres M., Camotim D., Silvestre N. (2012b). Geometrically and physically non-linear GBT-based analysis of thin-walled steel members, Proc. of the 10th Int. Conf. on Advances in Steel Concrete Composite and Hybrid Structures (ASCCS), Singapore, 2-4/7, J.R. Liew, S.C. Lee (eds.), Research Publishing (Singapore), 187-195.

Abambres M., Camotim D., Silvestre N. (2012c). First order elastoplastic GBT analysis of tubular beams, Proceedings of the 14th Int. Symposium on Tubular Structures, London (UK), 12-14/9, L. Gardner (ed.), CRC (Taylor & Francis), 705-712.

Abambres M., Camotim D., Silvestre N. (2012d). GBT-based elastic-plastic post-buckling analysis of stainless steel thin-walled members, Online proceedings of the Stainless Steel in Structures: 4th International Experts Seminar, Ascot (UK), 6-7/12, The Steel Construction Institute (SCI) (www.steel- stainless.org/experts12).

Abambres M., Camotim D., Silvestre N. (2013a). Modal decomposition of thin-walled member collapse mechanisms, Thin-Walled Structures, 74 (January), 269-291.

Abambres M., Camotim D., Silvestre N. (2013b). GBT-based first-order analysis of elastic-plastic thin- walled steel members exhibiting strain-hardening, IES Journal A: Civil and Structural Eng. (Singapore), 6(2), 119-134.

Abambres M., Camotim D., Silvestre N. (2013c). Inelastic post-buckling GBT analysis of tubular thin- walled metal members, Proceedings of the 5th International Conference on Structural Engineering, Mechanics and Computation, Cape Town (South Africa), 2-4/9, Alphose Zingoni (ed.), CRC Press, 417-418. (full paper in CD-ROM, 1157-1164).

Abambres M., Camotim D., Silvestre N. (2013d). Geometrically and materially non-linear GBT analysis of tubular thin-walled metal members, USB-drive Proc. Congress on Numerical Methods in Engineering, Bilbao (Spain), 25-28/6.

Abambres M., Camotim D., Silvestre N. (2013e). GBT-based structural analysis of elastic-plastic thin- walled members, USB Drive Proc. of the SSRC Annual Stability Conference, St. Louis (Missouri, USA), 16-20/4.

Abambres M., Camotim D., Silvestre N. (2013f). Physically non linear GBT analysis of thin-walled members, Computers & Structures, 129 (December), 148-165.

Abambres M., Camotim D., Silvestre N. (2013g). GBT-based elastic-plastic post-buckling analysis of stainless steel thin-walled members, Thin-Walled Structures, in press.

Abambres M., Camotim D., Silvestre N. (2013h). Análise inelástica de pós-encurvadura de perfis metálicos de parede fina utilizando a teoria generalizada de vigas, Actas do IX Congresso de Construção Metálica e Mista (CMM), Matosinhos, Portugal, 24-25/10, L. Silva et al. (eds.).

Abambres M., Camotim D., Silvestre N., Rasmussen, K.J.R. (2013). GBT-based structural analysis of elastic-plastic thin-walled members, Computers & Structures, in press.

Abdella K. (2006). Inversion of a full-range stress-strain relation for stainless steel alloys, International Journal of Non-Linear Mechanics, 41(3), 456-463.

Abdella K. (2007). An explicit stress formulation for stainless steel applicable in tension and compression, Journal of Constructional Steel Research, 63(3), 326-331.

Abdella K., Thannon R.A., Mehri A.I., Alshaikh F.A. (2011). Inversion of three-stage stress-strain relation for stainless steel in tension and compression, Journal of Constructional Steel Research, 67(5), 826-832.

Ádány S., Joó A.L., Schafer B.W. (2010). Buckling mode identification of thin-walled members by using cFSM base functions, Thin-Walled Structures, 48(10-11), 806-817.

Ádány S., Schafer B.W. (2006). Buckling mode decomposition of single-branched open cross-section members via finite strip method: Application and examples, Thin-Walled Structures, 44(5), 585-600.

AISI - American Iron and Steel Institute (1968). Specification for the Design of Light Gauge Cold-Formed Stainless Steel Structural Members, American Iron and Steel Institute.

AISI - American Iron and Steel Institute (2007). North American Specification for the Design of Cold Formed Steel Structural Members, American Iron and Steel Institute.

Allen D. (2006). History of cold formed steel, STRUCTURE magazine (November), pp. 28-32.

AISC - American Institute of Steel Construction (2010). Specification for Structural Steel Buildings, ANSI/AISC 360-10, Chicago.

American Mathematical Society (1963). Selected papers of Richard von Mises, American Mathematical Society, Providence, Rhode Island, pp. 189-199.

Anapayan T., Mahendran M., Mahaarachchi D. (2011). Lateral distortional buckling tests of a new hollow flange channel beam, Thin-Walled Structures, 49(1), 13-25.

Anapayan T, Mahendran M. (2012). “Numerical modelling and design of LiteSteel Beams subject to lateral buckling”, Journal of Constructional Steel Research, 70(March), 51-64.

Standards Australia (AS) / New Zeland (NZS) (2001). Cold-Formed Stainless Steel Structures (AS/ NZS 4673:2001).

ASCE - American Society of Civil Engineers (1991). Specification for the Design of Cold-Formed Stainless Steel Structural Members (ANSI/ASCE-8-90), American Society of Civil Engineers.

ASCE - American Society of Civil Engineers (2002). Specification for the Design of Cold-Formed Stainless Steel Structural Members (SEI/ASCE 8-02), American Society of Civil Engineers.

Ashraf M., Gardner L., Nethercot D. (2005). Strength enhancement of the corner regions of stainless steel cross-sections, Journal of Constructional Steel Research, 61(1), 37-52.

Ashraf M., Gardner L., Nethercot D. (2006a). Compression strength of stainless steel cross-sections, Journal of Constructional Steel Research, 62(1-2), 105-115.

Ashraf M., Gardner L., Nethercot D. (2006b). Finite element modelling of structural stainless steel cross- sections, Thin-Walled Structures, 44(10), 1048-1062.

Baddoo N.R. (2008). Stainless steel in construction: A review of research, applications, challenges and opportunities, Journal of Constructional Steel Research, 64(11), 1199-1206.

Bakker, M.C.M. (1990). Yield-line analysis of post-collapse behavior of thin-walled steel members, Heron, Vol. 35, N° 3, Vrouwenvelder et al. (eds.), Delft University of Technology.

Basaglia C. (2010). Análise Não Linear de Barras e Pórticos Metálicos Utilizando a Teoria Generalizada de Vigas, Tese de Doutoramento, Departamento de Engenharia Civil, Arquitectura e Georecursos, Instituto Superior Técnico (UTL).

Batra, R.C. (2006). Elements of Continuum Mechanics, AIAA Education Series, Reston.

Bauschinger J. (1886). On the change of the position of elastic limit of iron and steel under cyclic variation of stress, Mitt. Mech.-Tech. Lab. Munich, 13(1).

Bebiano R., Camotim D., Gonçalves R. (2013). Desenvolvimentos Recentes no Programa GBTUL: Análise de Barras de Parede Fina utilizando a GBT, USB-drive Proc. of the Congress on Numerical Methods in Eng., Bilbao (Spain), 25-28/6.

BebianoR.,PinaP.,SilvestreN.,CamotimD.(2008).GBTUL–BucklingandVibrationAnalysisofThin- Walled Members (software), DECivil/IST, University of Lisbon (http://www.civil.ist.utl.pt/gbt).

Bebiano R., Silvestre N., Camotim D. (2007). GBT formulation to analyze the buckling behaviour of thin-walled members subjected to non-uniform bending, Int. Journal of Structural Stability and Dynamics, 7(1), 23-54.

Becque J. (2010). Inelastic plate buckling, Journal of Engineering Mechanics – ASCE, 136(9), 1123-30.

Becque J. (2011). Experimental verification of an inelastic plate theory based on plastic flow theory, Thin-Walled Structures, 49(12), 1563-1572.

Becque J., Rasmussen K.J.R. (2009). Numerical investigation of the interaction of local and overall buckling of stainless steel I-columns, Journal of Structural Engineering, 135(11), 1349-1356.

Becque J., Rasmussen K.J.R. (2009). Experimental investigation of local-overall interaction buckling of stainless steel lipped channel columns, Journal of Constructional Steel Research, 65 (8-9), 1677-1684.

Belytschko T., Liu W.K., Moran B. (2000). Nonlinear Finite Elements for Continua and Structures, Wiley, Chichester (UK).

Bjorhovde R. (1972). Deterministic and probabilistic approaches to the strength of steel columns, Ph. D. dissertation, Lehigh University, Bethlehem (PA).

Bonada J., Casafont M., Roure F., Pastor M.M. (2012). Selection of the initial geometrical imperfection in nonlinear FE analysis of cold-formed steel rack columns, Thin-Walled Structures, 51(February), 99-111.

Bridgman P.W. (1952). Studies in Large Plastic Flow and Fracture With Special Emphasis on the Effects of Hydrostatic Pressure, McGraw-Hill, NewYork.

Buildings Department (BD) - The Government of the Hong Kong Special Administrative Region (2011). Code of Practice for the Structural Use of Steel, Hong Kong.

Camotim D., Basaglia C., Bebiano R., Gonçalves R., Silvestre N. (2010a). Latest developments in the GBT analysis of thin-walled steel structures, Proceedings of International Colloquium on Stability and Ductility of Steel Structures (SDSS’Rio - Río de Janeiro, 8-10/9), E. Batista et al. (eds.), 33-58.

Camotim D., Basaglia C., Silva N.F., Silvestre N. (2010b). Numerical analysis of thin-walled structures using Generalised Beam Theory (GBT): recent and future developments, Computational Technology Reviews, 1, B. Topping et al. (eds.), Saxe-Coburg Publications (Stirlingshire), 315-354.

Camotim D., Silvestre N., Dinis P.B. (2006a). Análise numérica de elementos estruturais de aço enformados a frio: desenvolvimentos recentes perspectivas futuras, Revista Sul-Americana Eng. Estrutural, 3(1), 55-100.

Camotim D., Silvestre N., Gonçalves R. e Dinis P.B. (2004). GBT analysis of thin-walled members: new formulations and applications, Thin-Walled Structures: Recent Advances and Future Trends in Thin-Walled Structures Technology (International Workshop - Loughborough, 25/6), J. Loughlan (Ed.), Canopus Publishing Ltd., 137-168.

Camotim D., Silvestre N., Gonçalves R. e Dinis P.B. (2006b). GBT-based structural analysis of thin-walled members: overview, recent progress and future developments, Advances in Engineering Structures, Mechanics and Construction (Smcd 2006 - Waterloo, 14-17/5), M. Pandey, W.-C. Xie, L. Chu (Eds.), Springer, 187-204.

Casafont M., Marimon F., Pastor M., Ferrer M. (2011). Linear buckling analysis of thin- walled members combining the Generalised Beam Theory and the Finite Element Method, Computers & Structures, 89(21-22), 1982-2000.

CASE - Centre for Advanced Structural Engineering (1996). Computer Program THIN-WALL (v.1.2) - Users Manual, School of Civil and Mining Engineering, University of Sydney.

CEN - Comité Européen de Normalisation (2005a). Eurocode 3: Design of Steel Structures - Part 1-1: General Rules and Rules for Buildings (EN 1993-1-1), Bruxelas.

CEN - Comité Européen de Normalisation (2005b). Stainless Steels - Part 1: List of Stainless Steels (EN 10088-1), Bruxelas.

CEN - Comité Européen de Normalisation (2006a). Eurocode 3: Design of Steel Structures – Part 1-4: General Rules – Supplementary Rules for Stainless Steels (EN 1993-1-4), Bruxelas.

CEN - Comité Européen de Normalisation (2006b). Eurocode 3: Design of Steel Structures – Part 1.5: General Rules and Supplementary Rules for Plated Structures (EN 1993-1-5), Bruxelas.

CEN - Comité Européen de Normalisation (2006c). Eurocode 3: Design of Steel Structures – Part 1-3: General rules - Supplementary Rules for Cold-Formed Members and Sheeting (EN 1993-1-3), Bruxelas.

CEN - Comité Européen de Normalisation (2009). Stainless Steels – Part 4: Technical Delivery Conditions for Sheet/Plate and Strip of Corrosion Resisting Steels for Construction Purposes (EN 10088-4), Bruxelas.

Chen W.F., Han D.J. (1988). Plasticity for Structural Engineers, Springer-Verlag, New York.

Cheung Y.K. (1969). Folded Plate Structures by the Finite Strip Method, J. Structural Division (ASCE), 95, 2963-2979.

Cheung Y.K. (1976). Finite Strip Method in Structural Analysis, Pergamon Press, Oxford.

Cheung Y.K., Tham L.G. (1998). The Finite Strip Method, CRC Press, Boca Raton.

Cheung M.S., Li W., Chidiac S.E. (1996). Finite Strip Analysis of Bridges, E & FN Spon, London.

Christensen R.M. (2006). A comprehensive theory of yielding and failure for isotropic materials, Journal of Engineering Materials and Technology, 129 (April), 173-181.

Clarke M. J., Hancock G.J. (1990). A Study of Incremental-Iterative Strategies for Non-Linear-Analysis, International Journal for Numerical Methods in Engineering, 29(7), 1365-1391.

Clough R.W. (1960). The finite element method in plane stress analysis, Proceedings of 2nd conference on electronic computation, ASCE Structural Division, Pittsburgh, 345.

Clough R.W., Wilson E.L. (1962). Stress analysis of a gravity dam by the finite element method, Proceedings of symposium on the use of computers in civil engineering, LNEC, Lisbon, v. 1, 29.1- 29.22.

Crisfield M.A. (1981). A fast incremental/iterative solution procedure that handles “snap-through”, Computers and Structures, 13(1-3), 55-62.

Crisfield M.A. (1991). Non-Linear Finite Element Analysis of Solids and Structures (Vol.1: Essentials), John Wiley & Sons.

Crisfield M.A. (1997). Non-Linear Finite Element Analysis of Solids and Structures (Vol. 2: Adv. Topics), John Wiley & Sons.

Cruise R.B., Gardner L. (2006). Measurement and prediction of geometric imperfections in structural stainless steel members, Structural Engineering and Mechanics, 24(1), 63-89.

Cruise R.B., Gardner L. (2008a). Residual stress analysis of structural stainless steel sections, Journal of Constructional Steel Research, 64(3), 352-366.

Cruise R.B., Gardner L. (2008b). Strength enhancements induced during cold forming of stainless steel sections, Journal of Constructional Steel Research, 64(11), 1310-1316.

CUFSM (2011). Elastic Buckling Analysis of Thin-Walled Members by the finite strip method and constrained finite strip method for general end boundary conditions (v 4.05), Department of Civil Engineering, Johns Hopkins University (http://www.ce.jhu.edu/bschafer).

Cunat P.-J. (2004). Alloying Elements in Stainless Steel and Other Chromium-Containing Alloys, disponível em www.euro-inox.org, Euro Inox, Bruxelas.

Dawson R.G., Walker A.C. (1972). Post-buckling of geometrically imperfect plates, Journal of Structural Division (ASCE), 98(1), 75-94.

De Borst R., Crisfield M., Remmers J., Verhoosel C.V. (2012). Nonlinear Finite Element Analysis of Solids and Structures (Second Edition), John Wiley & Sons, Chichester (UK).

DinisP.B.,CamotimD.,SilvestreN. (2006). GBTformulationtoanalysethebucklingbehaviourofthin- walled members with arbitrarily ‘branched’ open cross-sections, Thin-Walled Structures, 44(1), 20- 38.

Dinis P.B., Camotim D., Silvestre N. (2010). On the local and global buckling behaviour of angle, T-section and cruciform thin-walled members, Thin-Walled Structures, 48(10-11), 786-797.

Dinis P.B., Camotim D., Silvestre N. (2012). On the mechanics of thin-walled angle column instability, Thin-Walled Structures, 52(March), 80-89.

DS Simulia Inc. (2004). ABAQUS Standard (version 6.5).

Dubina D., Ungureanu V. (2002). Effect of imperfections on numerical simulation of instability behaviour of cold-formed steel members, Thin-Walled Structures, 40(3), 239-262.

Dunai L. (2002). Virtual Experiments of Steel Structures, Stability and Ductility of Steel Structures (SDSS’2002), Iványi M. (Ed.), Akadémiai Kiadó, Budapest, 825-832.

Ellobody E., Young B. (2005). Structural performance of cold-formed high strength stainless steel columns, Journal of Constructional Steel Research, 61(12), 1631-1649.

Euro Inox (2002). ‘Villa Inox’ in Tuusula, Finland, disponível em www.euro-inox.org, Euro Inox, Bruxelas.

Euro Inox (2007a). Commentary to the third edition of the design manual for structural stainless steel, disponível em www.steel-stainless.org/designmanual, Building Series, Vol. 11, Euro Inox, Bruxelas.

Euro Inox (2007b). Stainless steel: Tables of technical properties (second edition), Materials and Applications Series, Vol. 5, Euro Inox, Bruxelas.

Euro Inox, SCI - The Steel Construction Institute (2007). Design Manual for Structural Stainless Steel (third edition), Building Series, Vol. 11, Euro Inox, Bruxelas.

Gao T., Moen C. (2010). The Cold Work of Forming Effect in Steel Structural Members, Proceedings of the International Colloquia on Stability and Ductility of Steel Structures (SDSS), Río de Janeiro, Brazil, 8-10/9.

Gardner L., Nethercot D. (2004a). Experiments on stainless steel hollow sections – Part 1: Material and cross-sectional behaviour, Journal of Constructional Steel Research, 60(9), 1291-1318.

Gardner L., Nethercot D. (2004b). Numerical modeling of stainless steel structural components – A consistent approach, Journal of Structural Engineering, 130(10), 1586-1601.

Gardner L., Cruise R. (2009). Modeling of Residual Stresses in Structural Stainless Steel Sections, Journal of Structural Engineering, 135(1), 42-53.

Gau J.T., Kinzel G.L. (2001). An Experimental Investigation of the Influence of the Baushinger Effect on Springback Predictions, Journal of Materials Processing Technology, 108(3), 369-375.

Gedge G. (2008). Structural uses of stainless steel – buildings and civil engineering, Journal of Constructional Steel Research, 64(11), 1194-1198.

Gonçalves R., Camotim D. (2004). GBT local and global buckling analysis of aluminum and stainless steel columns, Computers and Structures, 82(17-19), 1473-1484.

Gonçalves R., Camotim D. (2005). Formulation of a physically non-linear beam finite element using generalised beam theory, Proceedings of 4th European Conference on Steel and Composite Structures (Eurosteel 2005), B. Hoffmeister e O. Hechler (Eds.), Maastricht 1.2-53 - 1.2-60.

Gonçalves R. e Camotim D. (2007). Thin-walled member plastic bifurcation analysis using generalised beam theory, Advances in Engineering Software, 38(8-9), 637-646.

Gonçalves R., Camotim D. (2011). Generalised beam theory-based finite elements for elastoplastic thin- walled metal members, Thin-Walled Structures, 49(10), 1237-1245.

Gonçalves R., Camotim D. (2012). Geometrically non-linear generalised beam theory for elastoplastic thin-walled metal members, Thin-Walled Structures, 51(February), 121-129.

Gonçalves R., Dinis P.B., Camotim D. (2005). GBT formulation to analyze the stability of thin-walled members with fully arbitrary cross-section shapes, CD-ROM Proceedings of the 2005 Joint ASME/ ASCE/SES Conference on Mechanics and Materials (McMat 2005 − Baton Rouge, 1-3/6).

Gonçalves R., Dinis P.B., Camotim D. (2009). GBT formulation to analyse the first-order and buckling behaviour of thin-walled members with arbitrary cross-sections, Thin-Walled Structures, 47(5), 583- 600.

Gonçalves R., Ritto-Corrêa M., Camotim D. (2010). A new approach to the calculation of cross-section deformation modes in the framework of Generalized Beam Theory, Computational Mechanics, 46(5), 759-781.

Gozzi, J. (2004). Plastic Behavior of Steel – Experimental Investigation and modeling (Licentiate Thesis), Lulea University of Technology, Sweden.

Granlund J. (1997). Structural Steel Plasticity – Experimental study and theoretical modelling, Doctoral Thesis, Lulea University of Technology, Lulea.

Hancock G.J. (1998). Design of Cold-Formed Steel Structures, Australian Institute of Steel Construction.

Hassanein M.F. (2010). Imperfection analysis of austenitic stainless steel plate girders failing by shear, Engineering Structures, 32(3), 704-713.

Hellweg H.-B., Crisfield M.A. (1998). A new arc-length method for handling sharp nap-backs, Computers and Structures, 66(5), 705-709.

Hencky, H. (1924). Zur theorie plastischer deformationen und der hierdurch im material hervorgerufenen nachspannungen, Proceedings of the International Congress for Applied Mechanics, Delft, 22-26/4, Technische Boekhandel en Drukkerij J. Waltman Jr., 1925, pp. 312-317.

Hill H. (1944). Determination of stress-strain relations from the offset yield strength values, Technical report 927, National Advisory Committee for Aeronautics, Washington.

Hill R. (1950). The Mathematical Theory of Plasticity, Clarendon Press, Oxford, UK.

Hiriyur B.K.J., Schafer B.W. (2005). Yield-line Analysis of Cold-formed Steel Members, International Journal of Steel Structures, 5(1), 43-54.

Houska C., Wilson K. (2008). Stainless steel inspires design metamorphosis, disponível em www.nickelinstitute.org, The Nickel Institute.

Hsu T.C. (1966). Definition of the yield point in plasticity and its effect on the shape of the yield locus, The Journal of Strain Analysis for Engineering Design, 1(4), 331-338.

Hutchinson J.W. (1974). Plastic Buckling, Advances in Applied Mechanics, Yih C-S (editor), New York: Academic, 67-144.

Ilyushin, A.A. (1948). Plasticity, Part 1 – Elastic-Plastic Deformations, State Publisher of Technical Theoretical Literature, Moscow and Leningrad, (reprinted by Logos, Moscow, 2004).

Ishikawa H. (1997). Subsequent Yield Surface Probed From Its Current Center, Int. Journal of Plasticity, 13(6-7), 533-549.

ISSF - International Stainless Steel Forum (2012). Documentação online disponível em www. worldstainless.org.

Jandera M., Gardner L., Machacek J. (2008). Residual stresses in cold-rolled stainless steel hollow sections, Journal of Constructional Steel Research, 64(11), 1255-1263.

Jiang X.-M., Chen H., Richard Liew J.Y. (2002). Spread-of-plasticity analysis of three- dimensional steel frames, Journal of Constructional Steel Research, 58(2), 193-212.

Johansson B., Olsson A. (2000). Current design practice and research on stainless steel structures in Sweden, Journal of Constructional Steel Research, 54(1), 3-29.

Jones, R.M. (2009). Deformation Theory of Plasticity, Bull Ridge, Blacksburg (Virginia, USA).

Key P.W., Hancock G.J. (1993a). A Theoretical Investigation of the Column Behavior of Cold-Formed Square Hollow Sections, Thin-Walled Structures, 16(1-4), 31-64.

Key P.W., Hancock G.J. (1993b). A finite strip method for the elastic-plastic large displacement analysis of thin-walled and cold-formed steel sections, Thin-Walled Structures, 16(1-4), 3-29.

Kfistek V., Bazant Z. (1987). Shear lag effect and uncertainty in concrete box girder creep, Journal of Structural Engineering, 113(3), 557-74.

Koiter W.T., Kuiken G.D. (1971). The Interaction Between Local Buckling and Overall Buckling on the Behaviour of Buit-up Columns, Report WTHD-23, Delft University of Technology.

Kotełko M. (2004). Load-capacity estimation and collapse analysis of thin-walled beams and columns- recent advances, Thin-Walled Structures, 42(2), 153-175.

Langdon G.S., Schleyer G. K. (2004). Unusual strain rate sensitive behaviour of AISI 316L austenitic stainless steel, The Journal of Strain Analysis for Engineering Design, 39(1), 71-86.

Lecce M., Rasmussen K.J.R. (2005). Experimental investigation of the distortional buckling of cold-formed stainless steel sections, Research Report N° 844 - School of Civil Engineering, University of Sydney, Australia.

Lecce M., Rasmussen K.J.R. (2006a). Distortional buckling of cold-formed stainless steel sections: Experimental investigation, Journal of Structural Engineering, 132(4), 497-504.

Lecce M., Rasmussen K.J.R. (2006b). Distortional buckling of cold-formed stainless steel sections: Finite-element modeling and design, Journal of Structural Engineering, 132(4), 505-514.

Lee S.C., Yoo C.H., Yoon D.Y. (2002). Analysis of Shear Lag Anomaly in Box Girders, Journal of Structural Engineering, 128(11), 1379-86.

Leonard, J. (2007). Investigation of Shear Lag Effect in High-rise Buildings with Diagrid System, Master Thesis in Civil and Environmental Engineering, M.I.T., U.S.A.

Li Z., Abreu J.B., Ádány S., Schafer B.W. (2012). Cold-formed steel member stability and the constrained Finite Strip Method, Proceedings of Sixth International Conference on Coupled Instabilities in Metal Structures (CIMS 2012 - Glasgow, 3-5/12), J. Loughlan, D. Nash, J. Rhodes (eds.), 1-16.

Li Z., Hanna M.T., Ádány S., Schafer B.W. (2011). Impact of basis, orthogonalization, and normalization on the constrained Finite Strip Method for stability solutions of open thin-walled members, Thin-Walled Structures, 49(9), 1108-1122.

Li Z., Schafer B.W. (2010). Buckling analysis of cold-formed steel members with general boundary conditions using CUFSM: conventional and constrained finite strip methods, Proceedings of the 20th International Specialty Conference on Cold-Formed Steel Structures (Saint Louis, MO, 3-4/11).

Liu Y., Hui L. (2010). Finite element study of steel single angle beam-columns, Engineering Structures, 32(8), 2087-2095.

Loughlan J. (ed.) (2004). Thin-Walled Structures - Advances in Research, Design and Manufacturing Technology, Institute of Physics Publishing (Bristol).

Lubliner, J. (1990). Plasticity Theory, Macmillan, New York.

Ludwik P. (1909). Elemente der Technologischen Mechanik, Springer-Verlag, Berlim.

MacDonald M., Rhodes J., Taylor G.T. (2000). Mechanical properties of stainless steel lipped channels, Proceedings of the 15th International Specialty Conference on Cold Formed Steel Structures, 673- 686, LaBoube R.A. e Yu W.-W. (eds.), University of Missouri-Rolla.

Mathworks (2012). Matlab R2010a, Product Documentation, Mathworks (www.mathworks.com/help/ techdoc).

Mendelson A. (1968). Plasticity: Theory and Application, Macmillan, New York.

Miettinen E. (2002). Sustainable architecture with stainless steel, Euro Inox, Bruxelas (www. euro-inox.org).

Mirambell E., Real E. (2000). On the calculation of deflections in structural stainless steel beams: An experimental and numerical investigation, Journal of Constructional Steel Research, 54(1), 109-133.

Moen C.D., Igusa T., Schafer B.W. (2008). Prediction of residual stresses and strains in cold-formed steel members, Thin-Walled Structures, 46(11), 1274-89.

Murray N.W. (1984). Introduction to the theory of thin-walled structures, Clarendon Press, Oxford.

Murray N.W., Khoo P.S. (1981). Some basic plastic mechanisms in the local buckling of thin-walled steel structures, International Journal of Mechanical Sciences, 23(12), 703-713.

Nadai, A. (1931). Plasticity, McGraw-Hill, New York and London.

Narayanan S., Mahendran M. (2002). Distortional Buckling Behaviour of Innovative Cold-formed Steel Columns, Proc. 3rd European Conference on Steel Structures (Eurosteel), A. Lamas, L. Simões da Silva (Eds.), Coimbra, Vol. 1, 723-732.

Narayanan S., Mahendran M. (2003). Ultimate Capacity of Innovative Cold-Formed Steel Columns, Journal of Constructional Steel Research, 59(4), 489-508.

Nedelcu M. (2010). GBT formulation to analyse the behaviour of thin-walled members with variable cross-section, Thin-Walled Structures, 48(8), 629-638.

Nedelcu M. (2011). GBT formulation to analyse the buckling behaviour of isotropic conical shells, Thin- Walled Structures, 49(7), 812-818.

Neto E.A. de S., Peric D., Owen D.R.J. (2008). Computational Methods for Plasticity – Theory and Applications, John Wiley & Sons Ltd. (Chichester).

Ohashi Y., Kawashima K., Yokoshi T. (1975). Anisotropy due to plastic deformation of initially isotropic mild steel and its analytical formulation, Journal of the Mechanics and Physics of Solids, 23(4-5), 277-294.

Olsson A. (2001). Stainless Steel Plasticity – Material modelling and structural applications, Doctoral Thesis, Department of Civil and Mining Engineering, Lulea University of Technology, Lulea.

Outokumpu (2013). Documentação online disponível em www.outokumpu.com.

Papangelis J.P., Hancock G.J. (1995). Computer Analysis of Thin-Walled Structural Members, Computers & Structures, 56, 157-176.

Pauly T., Helzel M. (2011). Stainless steel flat products for building – the grades in EN 10088-4 explained, Building Series, Vol. 18 (1st ed.), Euro Inox, Bruxelas.

Pham C., Hancock G. (2010). Numerical simulation of high strength cold-formed purlins in combined bending and shear, Journal of Constructional Steel Research, 66(10), 1205-1217.

Philips A., Moon H. (1977). An experimental investigation concerning yield surfaces and loading surfaces, Acta Mechanica, 27(1-4), 91-102.

Philips A., Lee C.-W. (1979). Yield Surfaces and loading surfaces. Experiments and recommendations, International Journal of Solids & Structures, 15(9), 715-729.

Philips A., Lu W.-Y. (1984). An experimental investigation of yield surfaces and loading surfaces of pure aluminium with stress controlled and strain controlled paths of loading, J. Eng. Mater. Tech., 106(4), 349-354.

Philips A. (1986). A review of quasistatic experimental plasticity and viscoplasticity, Int. Journal of Plasticity, 2(4), 315-328.

Powell G., Simons J. (1981). Improved iteration strategy for nonlinear structures, International Journal of Numerical Methods in Engineering, 17(10), 1455-1467, John Wiley & Sons Ltd.

Quach W.M., Teng J.G., Chung K.F. (2004). Residual stresses in steel sheets due to coiling and uncoiling: a closed-form analytical solution, Engineering Structures, 26(9), 1249-59.

Quach W.M., Teng J.G., Chung K.F. (2006). Finite element predictions of residual stresses in press- braked thin-walled steel sections, Engineering Structures, 28(11), 1609-1619.

Quach W.M., Teng J.G., Chung K.F. (2008). Three-stage full-range stress-strain model for stainless steels, Journal of Structural Engineering, 134(9), 1518-1527.

Ramberg W., Osgood W. (1943). Description of stress-strain curves by three parameters, Technical Note 902, National Advisory Committee for Aeronautics, Washington.

Rasmussen K.J.R. (2003). Full-range stress-strain curves for stainless steel alloys, J. Const. Steel Research, 59(1), 47-61.

Rasmussen K.J.R., Burns T., Bezkorovainy P., Bambach M. (2003). Numerical modelling of stainless steel plates in compression, Journal of Constructional Steel Research, 59(11), 1345-1362.

Reddy J.N. (2004). An Introduction to Nonlinear Finite Element Analysis, Oxford University Press, New York.

Reddy J.N. (2005). An Introduction to the Finite Element Method, McGraw-Hill Education-Europe.

Reis A., Camotim D. (2012). Estabilidade e Dimensionamento de Estruturas, edições Orion (Amadora).

Riks E. (1972). The application of Newton’s method to the problem of elastic stability, J. Applied Mechanics, 39(4), 1060-1066.

Riks E. (1979). An incremental approach to the solution of snapping and buckling problems, International Journal of Solids and Structures, 15(7), 529-551.

Ritto-Corrêa M., Camotim D. (2008). On the arc-length and other quadratic control methods: Established, less known and new implementation procedures, Computers and Structures, 86(11-12), 1353- 1368.

Rondal J. (1987). Residual stresses in cold-rolled profiles, Construction & Building Material, 1(3), 150- 64.

Rhodes J. (2002). Buckling of thin-plates and members and early work on rectangular tubes, Thin-Walled Structures, 40(2), 87-108.

Rossi B., Degée H., Pascon F. (2009). Enhanced mechanical properties after cold process of fabrication of non-linear metallic profiles, Thin-Walled Structures, 47(12), 1575-1589.

SANS - South African National Standards, SABS - South African Bureau of Standards (1997). Structural Use of Steel, Part 4: The Design of Cold-Formed Stainless Steel Structural Members (SANS 10162- 4/SABS 0162-4:1997).

Sarawit A.T., Kim Y., Bakker M.C.M., Pekoz T. (2003). The Finite Element Method for Thin-Walled Members – Applications, Thin-Walled Structures, 41(2-3), 191-206.

Schafer B.W., Li Z., Moen C.D. (2010). Computational modeling of cold-formed steel, Thin-Walled Struct., 48(10-11), 752-62.

Schafer B.W., Pekoz T. (1998). Computational modeling of cold-formed steel: characterizing geometric imperfections and residual stresses, Journal of Constructional Steel Research, 47(3), 193-210.

Schafer B.W. (2008). Review: The Direct Strength Method of cold-formed steel member design, Journal of Constructional Steel Research, 64(7-8), 766-778.

Schardt R. (1966). Extension of the Engineer’s Theory of Bending to the Analysis of Folded Plate Structures, Der Stahlbau, 35, 161–171. (em língua alemã).

Seo J., Anapayan T., Mahendran M. (2008). Initial imperfections characteristics of mono- symmetric Lite Steel Beams for Numerical Studies, Proceedings of Fifth International Conference on Thin-Walled Structures – Recent Innovations and Developments (ICTWS, Brisbane, 18-20/6), M. Mahendran (ed.).

Silva N.M.F. (2013). Behaviour and Strength of Laminated FRP Composite Structural Elements, Ph.D Thesis in Civil Engineering, Instituto Superior Técnico, Technical University of Lisbon, Portugal.

Silva N.M.F., Silvestre N., Camotim D. (2006). GBT formulation to analyse the post-buckling behaviour of FRP composite thin-walled members, CD-ROM Proc. of 8th Int. Conf. on Computational Structures Technology (Las Palmas, 12-15/9), B Topping, G Montero, R Montenegro (eds.), Civil-Comp Press, 441-442.

Silva N.M.F., Camotim D., Silvestre N. (2008). GBT cross-section analysis of thin-walled members with arbitrary cross-sections: a novel approach, Proc. of Fifth International Conference on Thin-Walled Structures – Recent Innovations and Developments (Brisbane, 18-20/6), M. Mahendran (ed.), 1189-1196 (Vol. 2).

Silvestre N. (2005). Teoria Generalizada de Vigas: Formulações, Implementação Numérica e Aplicações, Tese de Doutoramento, Departamento de Engenharia Civil, Arquitectura e Georecursos, Instituto Superior Técnico (UTL).

Silvestre N., Camotim D. (2003). Non-linear generalised beam theory for cold-formed steel members, International Journal of Structural Stability and Dynamics, 3(4), 461-490.

Silvestre N., Camotim D. (2006). Local-plate and distortional post-buckling behavior of cold- formed steel lipped channel columns with intermediate stiffeners, Journal of Structural Engineering, 132(4), 529-540.

Silvestre N., Camotim D., Silva N.M.F. (2011). Generalised Beam Theory revisited: from the kinematical assumptions to the deformation mode determination, International Journal of Structural Stability and Dynamics, 11(5), 969-997.

Sloan S.W., Abbo A.J., Sheng D. (2001). Refined explicit integration of elastoplastic models with automatic error control, Engineering Computations, 18(1/2), 121-154.

Sommerstein M. (1999). The national archives building roof in Gatineau, Quebec, Canada, Proceedings of the Fourth International Symposium on Roofing Technology, Gaithersburg, Maryland, E.U.A.

Spitzig W. A., Sober R. J., Richmond O. (1976). The Effect of Hydrostatic Pressure on the Deformation Behavior of Maraging and HY-80 Steels and Its Implications for Plasticity Theory, Metallurgical Transactions A, 7(11), 1703–1710.

Standards Australia (1998). AS 4100: Steel Structures, Sydney, Australia.

Stouffer D.C., Dame L. T. (1996). Inelastic Deformation of Metals, John Wiley and Sons, New York.

Sully R.M., Hancock G.J. (1996). Behavior of Cold-Formed SHS Beam-Columns, J. Structural Eng., 122(3), 326-336.

Sung S.-J., Liu L.-W., Hong H.-K., Wu H.-C. (2011). Evolution of yield surface in the 2D and 3D stress spaces, International Journal of Solids and Structures, 48(6), 1054-1069.

Surovek A.E. (ed.) (2012). Advanced Analysis in Steel Frame Design: Guidelines for the use of Direct Second-Order Inelastic Analysis, Report of the Special Project Committee on Advanced Analysis, Technical Committee on Structural Members of the Structural Engineering Institute of American Society of Civil Engineers (ASCE).

Surovek A.E. (ed.), White D.W., Ziemian R.D., Camotim, D., Hajjar J., Teh L. (2011). Guidelines for the Use of Direct Second-Order Inelastic Analysis in Structural Design Assessment of Planar Steel Frames, ASCE Press, Reston, VA.

The Nickel Institute (2012). Celebrating the 100th anniversary of stainless steel, Nickel Magazine (special issue), The Nickel Institute, Bruxelas.

Theofanous M., Gardner L. (2009). Testing and numerical modelling of lean duplex stainless steel hollow section columns, Engineering Structures, 31(12), 3047-3058.

Theofanous M., Gardner L. (2010). Experimental and numerical studies of lean duplex stainless steel beams, Journal of Constructional Steel Research, 66(6), 816-825.

Theofanous M., Gardner L. (2011). Effect of element interaction and material nonlinearity on the ultimate capacity of stainless steel cross-sections, Steel and Composite Structures, 12(1), 73-92.

Ungureanu V., Kotelko M., Mania R.J., Dubina D. (2010). Plastic mechanisms database for thin-walled cold-formed steel members in compression and bending, Thin-Walled Structures, 48(10-11), 818-26.

van den Berg G.J. (2000). The effect of the non-linear stress-strain behavior of stainless steels on member capacity, Journal of Constructional Steel Research, 54(1), 135-160.

van der Neut A. (1969). The interaction of local buckling and column failure of thin-walled compression members, Proc. 12th Int. Cong. on Applied Mechanics, Stanford Univ., Springer-Verlag, Berlin, 389-399.

Vieira R.F. (2010). A Higher Order Thin-Walled Beam Model, PhD Thesis in Civil Engineering, Instituto Superior Técnico, University of Lisbon, Portugal.

Vieira R.F., Virtuoso F.B., Pereira E.B.R. (2014). A higher order model for thin-walled structures with deformable cross-sections, International Journal of Solids and Structures, 51(3–4), 575-598.

Vlasov V.Z. (1940). Piéces Longues en Voiles Minces, Editions Nationales Physico-Mathématiques, Moscow. (em língua russa − tradução em língua francesa: Éditions Eyrolles, Paris, 1962).

Vlasov V.Z. (1959). Thin-Walled Elastic Bars, Fizmatgiz, Moscow. (em língua russa − tradução em língua inglesa: Israel Program for Scientific Translation, Jerusalém, 1961).

Walker A.C. (Ed.) (1975). Design and Analysis of Cold-Formed Sections, John Wiley & Sons, New York.

Wang Y.-B., Li G.-Q., Chen S.-W. (2012a). The assessment of residual stresses in welded high strength steel box sections, Journal of Constructional Steel Research, 76(September), 93-99.

Wang Y.-B., Li G.-Q., Chen S.-W. (2012b). Residual stresses in welded flame-cut high strength steel H-sections, Journal of Constructional Steel Research, 79(December), 159-165.

Watanabe S. (1996). Technological progress and future outlook for stainless steel, Nippon Steel Technical Report, No. 71, disponível em www.nssmc.com, Nippon Steel.

Wempner G.A. (1971). Discrete approximation related to nonlinear theories of solids, International Journal of Solids and Structures, 17(11), 1581-1599.

Wilson C.D. (2002). A critical reexamination of classical metal plasticity, Journal of Applied Mechanics, 69(Jan.), 63-68.

Winter G. (1959). Cold-formed light-gauge steel construction, J. Structural Division (ASCE), 85(9), 151-171.

Wittrick W.H. (1968). A Unified Approach to Initial Buckling of Stiffened Panels in Compression, Aeronautical Quarterly, 19, Part 3, 265-283.

World Steel Association (2013). Documentação online disponível em www.worldsteel.org.

Wriggers P., Chavan K. (2006). Beam and Shell Elements for Thin-Walled Aluminium Structures, Foundations of Civil and Environmental Engineering, 7, Publishing House of Poznan University of Technology.

Wu H.-C. (2003). Effect of loading-path on the evolution of yield surface for anisotropic metals subjected to large pre-strain, Int. Journal of Plasticity, 19(10), 1773-1800.

Wu H.-C. (2005). Continuum Mechanics and Plasticity, Chapman & Hall/CRC, Boca Raton.

Wu H.-C., Lu J.K., Pan W.F. (1995). Some observations on yield surfaces for 304 stainless steel at large strain, Journal Appl. Mech., 62(3), 626-632.

Yan J., Young B. (2004). Numerical investigation of channel columns with complex stiffeners – part I: test verification, Thin-Walled Structures, 42(6), 883-893.

Yang D., Hancock G., Rasmussen K.J.R. (2004). Compression Tests of Cold-Reduced High Strength Steel Sections. II: Long Columns, Journal of Structural Engineering, 130(11), 1782–1789.

Young B., Ellobody E. (2005). Buckling Analysis of Cold-Formed Steel Lipped Angle Columns, Journal of Structural Engineering, 131(10), 1570-1579.

Young B., Lui W. (2005). Behavior of cold-formed high strength stainless steel sections, Journal of Structural Engineering, 131(11), 1738-1745.

Young B., Rasmussen K.J.R. (1999). Shift of effective centroid in channel columns, J. Struct. Engineering, 125(5), 524-531.

Young B., Yan J. (2002a). Finite element analysis and design of fixed-ended plain channel columns, Finite Elements in Analysis and Design, 38(6), 549-566.

Young B., Yan J. (2002b). Channel columns undergoing local, distortional, and overall buckling, Journal of Structural Engineering, 128(6), 728-736.

Zeinoddini V., Schafer B. (2011). Global imperfections and dimensional variations in cold-formed steel. International Journal of Structural Stability and Dynamics, 11(5), 829-854.

Zhang Y., Lin L. (2013). Shear Lag Analysis of Thin-Walled Box Girders Adopting Additional Deflection as Generalized Displacement, Journal of Engineering Mechanics, in press (September).

Zhao X.L., Hancock G.J. (1993a). A theoretical analysis of plastic moment capacity of an inclined yield-line under axial force, Thin-Walled Structures, 15(3), 185-207.

Zhao X.L., Hancock G.J. (1993b). Experimental verification of the theory of plastic moment capacity of an inclined yield line under axial load, Thin-Walled Structures, 15(3), 209-233.

Zhao X.L. (2003). Yield line mechanism analysis of steel members and connections, Progress in Structural Engineering Materials, 5(4), 252-262.

Zienkiewicz O.C., Taylor R.L., Zhu J.Z. (2013). The Finite Element Method: Its Basis and Fundamentals (Seventh Edition), Butterworth-Heinemann, Oxford.

Sistema OJS - Metabiblioteca |